Showing 16 results

Archival description
University of Saskatchewan, University Archives & Special Collections Research laboratories√
Print preview View:

14 results with digital objects Show results with digital objects

Robert Teed in Cereal Chemistry Research Lab

Robert (Bob) Teed operating Kjeldahl nitrogen analysis apparatus at the Cereal Chemistry Research Lab. The first stage of the two-step process shown entailed the boiling of concentrated sulfuric acid.

Bio/Historical Note: Robert Gordon Teed was born in Humboldt on 21 Dec.1924, He moved to Saskatoon and graduated from Nutana Collegiate. He joined the Royal Canadian Army in 1943, serving overseas from 1944 until July 1946, the last year as part of the Army of Occupation. In 1947 Teed joined the Department of Chemistry, where he worked as a technician until sickness forced him to retire. Teed died on 29 Dec. 1985 in Saskatoon.

Dr. John Postlethwaite - In Lab

Note on back of photograph: "Dr. John Postlethwaite, Associate Professor of Chemistry and Chemical Engineering, uses electro-chemical apparatus to measure corrosion rates in a section of iron pipe carrying potash in water. The pipe under study is in a flow loop which also contains transparent sections so that interior conditions can be observed." In Thorvaldson lab.

Bio/Historical Note: Dr. John Postlethwaite was on the faculty of Chemical Engineering from 1975-1983.

Dr. R.L. Eager - In Lab

Note on back: "Dr. R.L. Eager, Chemistry Professor, inserts a reactor containing aspen poplar, water, carbon monoxide and a catalyst into a holder, which in turn will be placed in a heavy walled stainless steel vessel for heating. The vessel is located behind steel walls in view of the high pressure generated". In Thorvaldson lab.

Bio/Historical Note: Dr. Richard Livingston (Dick) Eager was born 27 August 1917 in Kenaston, Saskatchewan. He earned a BE (1943) and an MSc (1945) from the University of Saskatchewan. In 1949 he received a PhD from McGill University. Dr. Eager was appointed special lecturer at the U of S in 1947 and was a full professor by 1965. He retired in 1984 and was named professor emeritus. Dr. Eager died in Saskatoon in 2003.

Linear Accelerator Lab - Equipment

Looking at some equipment in the Linear Accelerator Lab are (l to r): Dr. Leon Katz, Director of Linear Accelerator Laboratory and Professor of Physics; Dr. Vasilii Vasilevich Vladimirskii, Russian nuclear physicist and Director of the Institute for Theoretical and Experimental Physics, Moscow; and J.W.T. Spinks, University President and Professor of Chemistry.

National Research Council and Engineering Building

Elevated view looking northeast at National Research Council building, with Engineering Building in background.

Bio/Historical Note: In 1916 the National Research Council legislation was enacted and the institution was formed with the mandate to advise the government on matters of science and industrial research. For the first 15 or 16 years of its existence the NRC consisted of offices and borrowed lab space. It launched Canada’s first research journal, “Canadian Journal of Research” and funded research for human and bovine tuberculosis – a significant domestic problem in the 1920s. In 1932, NRC’s first dedicated lab was built in Ottawa. The NRC established a laboratory on the east side of the University of Saskatchewan campus in 1948. The original purpose of the facility was to “use chemistry and biology to diversify Canadian agriculture.” Originally called the “Prairie Regional Lab” then the “Plant Biotechnology Institute,” the facility is now known as “NRC Saskatoon.”

Linear Accelerator Building - Sod Turning

J.W.T. Spinks, University President, watches Sir John Cockcroft, Nobel Prize-winning scientist; use the shovel to break ground. On raised dais in background are Herb Pinder (second from left), member, University Board of Governors; and S.L. (Sid) Buckwold (third from left), Mayor of Saskatoon.

Bio/Historical Note: The building of the Linear Accelerator (Linac) was not a random event but rather the result of a series of developments on campus. The Department of Physics had over the previous decades built a reputation for experimentation and innovation. The post-war period saw the University of Saskatchewan in the forefront of nuclear physics in Canada. In 1948, Canada’s first betatron (and the world’s first used in the treatment of cancer) was installed on campus. It was used for research programs in nuclear physics, radiation chemistry, cancer therapy and radiation biology. Next the world’s first non-commercial cobalt-60 therapy unit for the treatment of cancer was officially opened in 1951. With this unit research was undertaken in the areas of radiological physics, radiation chemistry and the effects of high energy radiation on plants and animals. When the construction of the Linear Accelerator was announced in the fall of 1961, it was portrayed as the next logical step on the University’s research path. Varian Associates, Palo Alto, California, designed and built the accelerator with Poole Construction of Saskatoon employed as the general contractor. The 80 foot electron accelerator tube was to create energy six times that of the betatron. The cost of the $1,750,000 facility was split between the National Research Council and the University of Saskatchewan with the NRC meeting the cost of the equipment and the University assuming the costs of the building. The official opening in early November of 1964 was more than just a few speeches and the cutting of a ribbon. It was a physics-fest, with 75 visiting scientist from around the world in attendance presenting papers and giving lectures over the period of several days. Three eminent physicists were granted honorary degrees at the fall convocation and hundreds of people showed up for the public open house. For three decades the Linac has served the campus research community and will continue to do so as it has become incorporated into the Canadian Light Source synchrotron.

Linear Accelerator Lab - Equipment

A technician stands beside the Linear Accelerator.

Bio/Historical Note: The building of the Linear Accelerator (Linac) was not a random event but rather the result of a series of developments on campus. The Department of Physics had over the previous decades built a reputation for experimentation and innovation. The post-war period saw the University of Saskatchewan in the forefront of nuclear physics in Canada. In 1948, Canada’s first betatron (and the world’s first used in the treatment of cancer) was installed on campus. It was used for research programs in nuclear physics, radiation chemistry, cancer therapy and radiation biology. Next the world’s first non-commercial cobalt-60 therapy unit for the treatment of cancer was officially opened in 1951. With this unit research was undertaken in the areas of radiological physics, radiation chemistry and the effects of high energy radiation on plants and animals. When the construction of the Linear Accelerator was announced in the fall of 1961, it was portrayed as the next logical step on the University’s research path. Varian Associates, Palo Alto, California, designed and built the accelerator with Poole Construction of Saskatoon employed as the general contractor. The 80 foot electron accelerator tube was to create energy six times that of the betatron. The cost of the $1,750,000 facility was split between the National Research Council and the University of Saskatchewan with the NRC meeting the cost of the equipment and the University assuming the costs of the building. The official opening in early November of 1964 was more than just a few speeches and the cutting of a ribbon. It was a physics-fest, with 75 visiting scientist from around the world in attendance presenting papers and giving lectures over the period of several days. Three eminent physicists were granted honorary degrees at the fall convocation and hundreds of people showed up for the public open house. For three decades the Linac has served the campus research community and will continue to do so as it has become incorporated into the Canadian Light Source synchrotron.

Linear Accelerator Lab - Equipment

View of heat exchangers.

Bio/Historical Note: The building of the Linear Accelerator (Linac) was not a random event but rather the result of a series of developments on campus. The Department of Physics had over the previous decades built a reputation for experimentation and innovation. The post-war period saw the University of Saskatchewan in the forefront of nuclear physics in Canada. In 1948, Canada’s first betatron (and the world’s first used in the treatment of cancer) was installed on campus. It was used for research programs in nuclear physics, radiation chemistry, cancer therapy and radiation biology. Next the world’s first non-commercial cobalt-60 therapy unit for the treatment of cancer was officially opened in 1951. With this unit research was undertaken in the areas of radiological physics, radiation chemistry and the effects of high energy radiation on plants and animals. When the construction of the Linear Accelerator was announced in the fall of 1961, it was portrayed as the next logical step on the University’s research path. Varian Associates, Palo Alto, California, designed and built the accelerator with Poole Construction of Saskatoon employed as the general contractor. The 80 foot electron accelerator tube was to create energy six times that of the betatron. The cost of the $1,750,000 facility was split between the National Research Council and the University of Saskatchewan with the NRC meeting the cost of the equipment and the University assuming the costs of the building. The official opening in early November of 1964 was more than just a few speeches and the cutting of a ribbon. It was a physics-fest, with 75 visiting scientist from around the world in attendance presenting papers and giving lectures over the period of several days. Three eminent physicists were granted honorary degrees at the fall convocation and hundreds of people showed up for the public open house. For three decades the Linac has served the campus research community and will continue to do so as it has become incorporated into the Canadian Light Source synchrotron.

Linear Accelerator Lab - Equipment

Two technicians at work in the control room.

Bio/Historical Note: The building of the Linear Accelerator (Linac) was not a random event but rather the result of a series of developments on campus. The Department of Physics had over the previous decades built a reputation for experimentation and innovation. The post-war period saw the University of Saskatchewan in the forefront of nuclear physics in Canada. In 1948, Canada’s first betatron (and the world’s first used in the treatment of cancer) was installed on campus. It was used for research programs in nuclear physics, radiation chemistry, cancer therapy and radiation biology. Next the world’s first non-commercial cobalt-60 therapy unit for the treatment of cancer was officially opened in 1951. With this unit research was undertaken in the areas of radiological physics, radiation chemistry and the effects of high energy radiation on plants and animals. When the construction of the Linear Accelerator was announced in the fall of 1961, it was portrayed as the next logical step on the University’s research path. Varian Associates, Palo Alto, California, designed and built the accelerator with Poole Construction of Saskatoon employed as the general contractor. The 80 foot electron accelerator tube was to create energy six times that of the betatron. The cost of the $1,750,000 facility was split between the National Research Council and the University of Saskatchewan with the NRC meeting the cost of the equipment and the University assuming the costs of the building. The official opening in early November of 1964 was more than just a few speeches and the cutting of a ribbon. It was a physics-fest, with 75 visiting scientist from around the world in attendance presenting papers and giving lectures over the period of several days. Three eminent physicists were granted honorary degrees at the fall convocation and hundreds of people showed up for the public open house. For three decades the Linac has served the campus research community and will continue to do so as it has become incorporated into the Canadian Light Source synchrotron.

Linear Accelerator Lab - Equipment

View of a modulator.

Bio/Historical Note: The building of the Linear Accelerator (Linac) was not a random event but rather the result of a series of developments on campus. The Department of Physics had over the previous decades built a reputation for experimentation and innovation. The post-war period saw the University of Saskatchewan in the forefront of nuclear physics in Canada. In 1948, Canada’s first betatron (and the world’s first used in the treatment of cancer) was installed on campus. It was used for research programs in nuclear physics, radiation chemistry, cancer therapy and radiation biology. Next the world’s first non-commercial cobalt-60 therapy unit for the treatment of cancer was officially opened in 1951. With this unit research was undertaken in the areas of radiological physics, radiation chemistry and the effects of high energy radiation on plants and animals. When the construction of the Linear Accelerator was announced in the fall of 1961, it was portrayed as the next logical step on the University’s research path. Varian Associates, Palo Alto, California, designed and built the accelerator with Poole Construction of Saskatoon employed as the general contractor. The 80 foot electron accelerator tube was to create energy six times that of the betatron. The cost of the $1,750,000 facility was split between the National Research Council and the University of Saskatchewan with the NRC meeting the cost of the equipment and the University assuming the costs of the building. The official opening in early November of 1964 was more than just a few speeches and the cutting of a ribbon. It was a physics-fest, with 75 visiting scientist from around the world in attendance presenting papers and giving lectures over the period of several days. Three eminent physicists were granted honorary degrees at the fall convocation and hundreds of people showed up for the public open house. For three decades the Linac has served the campus research community and will continue to do so as it has become incorporated into the Canadian Light Source synchrotron.

Linear Accelerator Building - Official Opening

J.W.T. Spinks, University President, speaks during the Linear Accelerator Building official opening.

Bio/Historical Note: The building of the Linear Accelerator (Linac) was not a random event but rather the result of a series of developments on campus. The Department of Physics had over the previous decades built a reputation for experimentation and innovation. The post-war period saw the University of Saskatchewan in the forefront of nuclear physics in Canada. In 1948, Canada’s first betatron (and the world’s first used in the treatment of cancer) was installed on campus. It was used for research programs in nuclear physics, radiation chemistry, cancer therapy and radiation biology. Next the world’s first non-commercial cobalt-60 therapy unit for the treatment of cancer was officially opened in 1951. With this unit research was undertaken in the areas of radiological physics, radiation chemistry and the effects of high energy radiation on plants and animals. When the construction of the Linear Accelerator was announced in the fall of 1961, it was portrayed as the next logical step on the University’s research path. Varian Associates, Palo Alto, California, designed and built the accelerator with Poole Construction of Saskatoon employed as the general contractor. The 80 foot electron accelerator tube was to create energy six times that of the betatron. The cost of the $1,750,000 facility was split between the National Research Council and the University of Saskatchewan with the NRC meeting the cost of the equipment and the University assuming the costs of the building. The official opening in early November of 1964 was more than just a few speeches and the cutting of a ribbon. It was a physics-fest, with 75 visiting scientist from around the world in attendance presenting papers and giving lectures over the period of several days. Three eminent physicists were granted honorary degrees at the fall convocation and hundreds of people showed up for the public open house. For three decades the Linac has served the campus research community and will continue to do so as it has become incorporated into the Canadian Light Source synchrotron.

Results 1 to 15 of 16